
SMARTFAULTINJECTOR: LLM-DRIVEN KERNEL FAULT INJECTION AND
TESTING FRAMEWORK

Jiahuan Liu 1 Chen Liang 1 2 Jiahao Zhao 1 Lili Zhang 1 2

ABSTRACT
In Linux kernel development and testing, fault injection(Natella et al., 2016) techniques play a crucial role. Kernel
developers need an effective method to simulate and test kernel behavior under various abnormal conditions.
Traditional hardware fault injection methods are costly and complex operationally, typically requiring specialized
equipment while affect hardware lifespan.

We propose SmartFaultInjector, combining Extended Berkeley Packet Filter(eBPF) and Large Language
Models(LLMs)(Hoffmann et al., 2022; Kaplan et al., 2020) for fault injection to enable hardware fault simulation
and any kernel subsystem fault injection in kernel space. The kprobe override feature of eBPF enables
precise interception and manipulation of kernel functions, SmartFaultInjector leverages the kprobe override
feature of eBPF, which allows us to override the return value of a specific function in a hardware driver within the
kernel, enabling fault injection from the kernel to the hardware. Kernel developers can use SmartFaultInjector to
simulate hardware faults in kernel space without any modifications to the hardware, and perform in-depth analysis
of kernel functions based on LLM to generate fault injection strategies, significantly enhancing kernel testability.

The architecture of the system is shown in Figure 1. SmartFaultInjector consists of Target Scanner, Comprehension
Engine, Fault Injection Module, and Positioning Cause. Target Scanner is responsible for analyzing driver
code, scanning frequently called parts in combination with LLM, and serving as candidates for fault injection.
Comprehension Engine utilizes LLM to conduct in-depth analysis of target functions based on their logical
structure and context(Brown et al., 2020), generating fault specification strategies. Fault Injection Module
is responsible for seamlessly integrating fault injection functionality into the existing system based on eBPF
technology. Positioning Cause is an independent observability module used to analyze changes in system behavior
after fault injection, providing feedback for the next iteration.

Compared to traditional fault injection methods, SmartFaultInjector has the following advantages:

• Minimal Cost: Developers only need to write eBPF code to simulate hardware faults in kernel space, no
specialized equipment is required for testing.

• No Impact on Hardware: Fault injection occurs in kernel space, and no actual modifications are made to
the hardware.

• Automated Fault Injection Strategy Generation: Combining LLM for in-depth analysis of kernel functions
to generate fault injection strategies automatically.

Based on this framework, we conducted simulated card drop tests on our internally developed network card,
verifying its effectiveness in kernel space fault injection. In the future, we will build a pipeline system that
automatically generates test programs for newly emerging driver modules, and automates the generation of eBPF
code for fault injection(Zheng et al., 2024) enabling the kprobe override feature.

Figure 1. SmartFaultInjector Architecture

*Equal contribution 1Xi’an University of Posts and Telecom-

munication, China 2Shaanxi Key Laboratory of Network Data
Analysis and Intelligent Processing. Correspondence to: Chen
Liang <mumulc@xupt.edu.cn>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).



SmartFaultInjector

ACKNOWLEDGEMENTS

This work was supported by ZTE Industry-University-
Institute Cooperation Funds under Grant No.
IA20221221020, Undergraduate Training Programs-
for Innovation and Entrepreneurship of ShaanxiProvince
No. S202411664170 and No. S202411664179, and the
Tencent’s T-Spark Program.

REFERENCES

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. Training compute-optimal large
language models, 2022.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Natella, R., Cotroneo, D., and Madeira, H. S. Assessing
dependability with software fault injection: A survey.
ACM Comput. Surv., 48(3):44:1–44:55, February 2016.
ISSN 0360-0300. doi: 10.1145/2841425. URL http:
//doi.acm.org/10.1145/2841425.

Zheng, Y., Yang, Y., Chen, M., and Quinn, A. Kgent:
Kernel extensions large language model agent. In Pro-
ceedings of the ACM SIGCOMM 2024 Workshop on
EBPF and Kernel Extensions, eBPF ’24, pp. 30–36,
New York, NY, USA, 2024. Association for Comput-
ing Machinery. ISBN 9798400707124. doi: 10.1145/
3672197.3673434. URL https://doi.org/10.
1145/3672197.3673434.

http://doi.acm.org/10.1145/2841425
http://doi.acm.org/10.1145/2841425
https://doi.org/10.1145/3672197.3673434
https://doi.org/10.1145/3672197.3673434

